1,545 research outputs found

    Diplomacy and Prejudice: A Seventy-One Year Survey of Japanese-American Relations

    Get PDF

    Production of Cydia pomonella granulovirus (CpGV) in a heteralogous host, Thaumatotibia Leucotreta (Meyrick) (False codling moth)

    Get PDF
    Cydia pomonella (Linnaeus) (Family: Tortricidae), the codling moth, is considered one of the most significant pests of apples and pears worldwide, causing up to 80% crop loss in orchards if no control measures are applied. Cydia pomonella is oligophagous feeding on a number of alternate hosts including quince, walnuts, apricots, peaches, plums and nectarines. Historically the control of this pest has been achieved with the use of various chemical control strategies which have maintained pest levels below the economic threshold at a relatively low cost to the grower. However, there are serious concerns surrounding the use of chemical insecticides including the development of resistance in insect populations, the banning of various insecticides, regulations for lowering of the maximum residue level and employee and consumer safety. For this reason, alternate measures of control are slowly being adopted by growers such as mating disruption, cultural methods and the use of baculovirus biopesticides as part of integrated pest management programmes. The reluctance of growers to accept baculovirus or other biological control products in the past has been due to questionable product quality and inconsistencies in their field performance. Moreover, the development and application of biological control products is more costly than the use of chemical alternatives. Baculoviruses are arthropod specific viruses that are highly virulent to a number of lepidopteran species. Due to the virulence and host specificity of baculoviruses, Cydia pomonella granulovirus has been extensively and successfully used as part of integrated pest management systems for the control of C. pomonella in Europe and around the world, including South Africa. Commercial formulations have been typically based on the Mexican strain of CpGV. However due to long-term multiple applications of CpGV and the reliance on CpGV in organic farming practices in Europe, resistance to the CpGV-M strain has developed in a number of field populations of C. pomonella. This study aimed to identify and characterize novel isolates of CpGV in South Africa and compare their virulence with the commercial standard CpGV-M. Secondly, since C. pomonella is difficult to culture on a large scale, an alternate method of CpGV production was investigated in order to determine if CpGV could be produced more efficiently and at a reduced cost without negatively impacting the quality of the product. Several isolates of CpGV were recovered either from field collected larvae or from a laboratory-reared C. pomonella colony. Characterisation of DNA profiles using a variety of restriction enzymes revealed that only a single isolate, CpGV-SA, was genetically different from the Mexican strain of the virus used in the commercially available CpGV based products in South Africa. In dose-response bioassays using CpGV-SA, LC₅₀ and LC₉₀ values for neonate C. pomonella larvae were 3.18 x 10³ OBs/ml and 7.33 x 10⁴ respectively. A comparison of these values with those of CpGV-M indicated no significant difference in the virulence of the two isolates under laboratory conditions. This is a first report of a genetically distinct CpGV isolate in South Africa. The biological activity and novelty of CpGV-SA makes this isolate a potentially important tool for CpGV resistance management in South Africa. In order to justify production of CpGV in an alternative host, studies on the comparative biological performance of C. pomonella and T. leucotreta based on oviposition, time to hatch, larval developmental times and rearing efficiency as well as production costs were performed. Thaumatotibia leucotreta was found to be more fecund and to have significantly shorter egg and larval developmental times. In addition, larval production per unit of artificial diet was significantly higher than for C. pomonella. This resulted in T. leucotreta being more cost effective to produce with implications for reduced insectary space, sanitation practices as well as the labour component of production. Virus yield data generated by inoculation both C. pomonella and T. leucotreta with nine concentrations of CpGV resulted in comparable virus yields, justifying the continuation of the research into production of CpGV in T. leucotreta. It was important to determine the LC and LT values required for mass production of CpGV in late instar T. leucotreta larvae. Dose- and time-response bioassays with CpGV-M were conducted on artificial diet to determine these values. Fourth instar LC₅₀ and LC₉₀ values were 5.96 x 10³ OBs/ml and 1.64 x 10⁵ OBs/ml respectively. LT50 and LT90 values were 81.10 hours and 88.58 hours respectively. Fifth instar LC₅₀ and LC₉₀ values were 6.88 x 10⁴ OBs/ml and 9.78 x 10⁶ OBs/ml respectively. LT₅₀ and LT₉₀ values were 111.56 hours and 137.57 hours respectively. Virus produced in fourth instar T. leucotreta larvae was bioassayed against C. pomonella neonate larvae and compared to CpGV-M to establish if production in the heterologous host negatively affected the virulence of the isolate. No significant difference in virulence was observed between virus produced in T. leucotreta and that produced in C. pomonella. The data generated in the bioassays was used in CpGV mass production trials to evaluate production. All production methods tested produced acceptable virus yields. To examine the quality of the virus product, genomic DNA was extracted from larval cadavers and subjected to REN analysis with HindIII. The resulting DNA profiles indicated that the virus product was contaminated with the homologous virus, CrleGV. Based on the above results, the use of T. leucotreta as an alternate host for the in vivo production of CpGV on a commercial basis is not at this stage viable and requires further investigation before this production methodology can be reliable used to produce CpGV. However, this study has shown that CpGV can be produced in a homologous host, T. leucotreta and significant strides have been made towards developing a set of quality control standards that are essential for further development of successful production methodology. Finally a novel isolate of CpGV has been identified with comparable virulence to the CpGV-M. This is an important finding as it has broad reaching implications for resistance management of CpGV products in South Africa

    Development of fungal biological control of four agriculturally important pests, Sitophilus oryzae, Trialeurodes vaporariorum, Planococcus ficus and Eldana saccharina, in South Africa.

    Get PDF
    Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2005.The use of entomopathogenic fungi to control agriculturally important pests, both in greenhouses and in the field, has been demonstrated by various authors for a number of years. This has been brought about by the development of resistance in certain pest species to chemical applications and a growing public awareness of the safety implications of residual insecticides. Several entomopathogenic fungi were tested against four insect pests found in the Republic of South Africa (RSA), the greenhouse whitefly, Trialeurodes vaporariorum, the rice weevil, Sitophilus oryzae, the grapevine mealybug, Planococcusficus and the sugarcane stem borer, Eldana saccharina. Further concentration, temperature and humidity studies were conducted with selected isolates on the rice weevil, S. oryzae. Sitophilus oryzae is considered one ofthe most important pests of stored grain. Several fungal isolates were tested against the rice weevil, four of which, B1, PPRI 6690, PPRI 6864 and PPRI 7067, were selected for further testing based on the mortality results over a 21 d period. Varying conidial concentrations were applied and at high doses of 1x10 -6 conidia ml -1 with mortality rates of to 84% achieved. LT 50 values ranged from 6 - 68d. Increased spore concentration resulted in an increase in overall mortality. Temperature and humidity was found to affect the infection potential of the four isolates tested. Four temperatures ranging from 15 - 30°C were tested. The highest mortality rates were obtained at 25°C where mortality ranged from 46 - 65% in 14d. Mortality rates decreased with decreasing temperature, and no mortality was recorded at 30°C. Temperature was found to significantly alter the LT 50 values, increasing the LT 50 with decreasing temperatures. Decreasing the humidity resulted in an increased LT 50 and a reduction in the overall mortality rates. The mortality of S. oryzae ranged according to the RH and isolate. Isolates Bland PPRI 6690 resulted in the highest mortalities of 80 and 83% at 92.5% RH, with LT 50's of 6.3d and 6.4d, respectively. Several entomopathogenic fungi were tested against T vaporariorum, P. ficus and E. saccharina, three key pests of South African crops. Nine fungal isolates were tested against the greenhouse whitefly, T vaporariorum, with mortalities ranging from 26.7 - 74.7% over 14d. Beauveria bassiana Isolates Bl and PPRl 6690 produced the highest mortality rates and were recommended for further pathogenicity testing against T. vaporariorum. Planococcus ficus is a common pest ofvineyards in the Western Cape Province, South Africa. Nine entomopathogenic fungi were screened against P.ficus, only two of which produced mortality. Eldana saccharina is a stalk borer, which infests sugarcane in large areas of Southern Africa. Five isolates were tested against second and third instar larvae, three of which, B1, PPRl 6864 and PPRl 6690 resulted in mortalities. Mean percentage mortality was low for all three isolates. From the study it was evident that two of the isolates tested, Bland PPRI 6690 (B. bassiana), showed potential against three of the four pests, and two isolates of Lecanicillium lecanii caused mortality in P. ficus. Further research and understanding of the effect of environmental conditions, spore concentration and epizootic potential would result in the further development of these isolates as future biological control agents

    Editorial: Operationalizing the Concepts of Resilience and Resistance for Managing Ecosystems and Species at Risk

    Get PDF
    Ecological resilience is essential for maintaining ecosystem services in an era of rapid global change, but successful attempts to operationalize it for managing ecosystems at risk have been limited. Clear formulation and application of ecological resilience concepts can guide ecosystem management so that it enhances the capacity of ecosystems to resist and recover from disturbances and provides adaptive space for periods of ecological reorganization. As originally defined, ecological resilience measures the amount of perturbation required to change an ecosystem from one set of processes and structures to a different set of processes and structures, or the amount of disturbance that a system can withstand before it shifts into a new regime or alternative stable state (Holling, 1973). In applied ecology, ecological resilience is increasingly used to evaluate the capacity of ecosystems to absorb, persist, and adapt to inevitable and often unpredictable change, and to use that information to determine the most effective management strategies (e.g., Chambers et al., 2014; Curtin and Parker, 2014; Pope et al., 2014; Seidl et al., 2016). As the scale and magnitude of ecological change increases, operationalizing ecological resilience for ecosystem management becomes ever more important. To date, much of the literature on ecological resilience has focused on theory, definitions, and broad conceptualizations (e.g., Gunderson, 2000; Folke et al., 2004, 2010; Walker et al., 2004; Folke, 2006; Gunderson et al., 2010). Much of the more applied research has focused on the importance of species diversity and species functional attributes in affecting responses to stress and disturbance (e.g., Pope et al., 2014; Angeler and Allen, 2016; Baho et al., 2017; Roberts et al., 2018). Recent, interdisciplinary research demonstrates that information on the relationships between an ecosystem’s environmental characteristics (climate, topography, soils, and potential biota) and its response to stress and disturbance provides a viable mechanism for assessing ecosystem resilience and relative risks (Chambers et al., 2014; Hessburg et al., 2016; Cushman et al., 2017; Kaszta et al., 2019). Approaches have been developed that enable application of resilience concepts at the scales needed for effective management of ecosystems experiencing progressive and deleterious change. For example, in the sagebrush biome of the western U.S. the concepts of resilience to fire and resistance to non-native invasive annual grasses have recently been used in an interagency framework to enhance conservation and restoration and help prevent listing of greater sage-grouse (Centrocercus urophasianus) under the Endangered Species Act (Chambers et al., 2017). In ecosystems around the globe, levels of ecological stress and disturbance are increasing while resources for natural resources management remain limited. Fully developing the capacity to operationalize the concept of ecological resilience can enable managers to prioritize the types and locations of management activities needed to optimize ecosystem conservation and restoration

    Operationalizing Ecological Resilience Concepts for Managing Species and Ecosystems at Risk

    Get PDF
    This review provides an overview and integration of the use of resilience concepts to guide natural resources management actions. We emphasize ecosystems and landscapes and provide examples of the use of these concepts from empirical research in applied ecology. We begin with a discussion of definitions and concepts of ecological resilience and related terms that are applicable to management. We suggest that a resilience-based framework for management facilitates regional planning by providing the ability to locate management actions where they will have the greatest benefits and determine effective management strategies. We review the six key components of a resilience-based framework, beginning with managing for adaptive capacity and selecting an appropriate spatial extent and grain. Critical elements include developing an understanding of the factors influencing the general and ecological resilience of ecosystems and landscapes, the landscape context and spatial resilience, pattern and process interactions and their variability, and relationships among ecological and spatial resilience and the capacity to support habitats and species. We suggest that a spatially explicit approach, which couples geospatial information on general and spatial resilience to disturbance with information on resources, habitats, or species, provides the foundation for resilience-based management. We provide a case study from the sagebrush biome that illustrates the use of geospatial information on ecological and spatial resilience for prioritizing management actions and determine effective strategies

    Somerville Stormwater Management IQP

    Get PDF
    This Interactive Qualifying Project, conducted with the help of Somerville Department of Public Works, reviewed the stormwater management policy in Somerville, Massachusetts. Working from case studies and guidelines from the Massachusetts Department of Environmental Protection (MDEP), Somerville\u27s stormwater management policy was analyzed and recommendations were presented

    Comprehensive synchronization elimination for Java

    Get PDF
    AbstractIn this paper, we describe three novel analyses for eliminating unnecessary synchronization that remove over 70% of dynamic synchronization operations on the majority of our 15 benchmarks and improve the bottom-line performance of three by 37–53%. Our whole-program analyses attack three frequent forms of unnecessary synchronization: thread-local synchronization, reentrant synchronization, and enclosed lock synchronization. We motivate the design of our analyses with a study of the kinds of unnecessary synchronization found in a suite of single- and multi-threaded benchmarks of different sizes and drawn from a variety of domains. We analyze the performance of our optimizations in terms of dynamic operations removed and run-time speedup. We also show that our analyses may enable the use of simpler synchronization models than the model found in Java, at little or no additional cost in execution time. The synchronization optimizations, we describe enable programmers to design efficient, reusable and maintainable libraries and systems in Java without cumbersome manual code restructuring
    corecore